Flood loss footprint characterization via hazard simulation
نویسندگان
چکیده
Established in 1984, the Wharton Risk Management and Decision Processes Center develops and promotes effective corporate and public policies for low-probability events with potentially catastrophic consequences through the integration of risk assessment, and risk perception with risk management strategies. Natural disasters, technological hazards, and national and international security issues (e.g., terrorism risk insurance markets, protection of critical infrastructure, global security) are among the extreme events that are the focus of the Center's research. The Risk Center's neutrality allows it to undertake large-scale projects in conjunction with other researchers and organizations in the public and private sectors. Building on the disciplines of economics, decision sciences, finance, insurance, marketing and psychology, the Center supports and undertakes field and experimental studies of risk and uncertainty to better understand how individuals and organizations make choices under conditions of risk and uncertainty. Risk Center research also investigates the effectiveness of strategies such as risk communication, information sharing, incentive systems, insurance, regulation and public-private collaborations at a national and international scale. From these findings, the Wharton Risk Center's research team – over 50 faculty, fellows and doctoral students – is able to design new approaches to enable individuals and organizations to make better decisions regarding risk under various regulatory and market conditions. The Center is also concerned with training leading decision makers. It actively engages multiple viewpoints, including top-level representatives from industry, government, international organizations, interest groups and academics through its research and policy publications, and through sponsored seminars, roundtables and forums. ABSTRACT Among all natural disasters, floods have historically been the primary cause of human and economic losses around the world. Improving flood risk management requires a multi-scale characterization of the hazard and associated losses-the flood loss footprint. But this is typically not available in a precise and timely manner, yet. We propose a novel and multidisciplinary approach to do just that, which relies on a computationally efficient hydrological model that simulates streamflow for scales ranging from small creeks to large rivers. We adopt a normalized index, the flood peak ratio (FPR), to characterize flood magnitude across multiple spatial scales. The simulated FPR is then shown to be a key statistical predictor for associated flood losses, based on insurance claims. Importantly, because it is based on a simulation procedure that utilizes generally readily available physically-based data, our flood simulation approach may be broadly utilized, even for ungauged and poorly gauged basins, thus providing the necessary …
منابع مشابه
Flood hazard zones using 2d hydrodynamic modeling and remote sensing approaches
Increasing frequency and severity of flooding demands identification of flood hazard zones in Kalilangan, Bukidnon in response to the echoing need of better disaster preparedness via enhancing the understanding and awareness of the public on flood characteristics by integrating the use of two-dimensional hydrodynamic modeling and remote sensing. Flood simulation was carried out in a two-dimensi...
متن کاملFlood hazard zoning using geographic information system (GIS) and HEC-RAS model (Case study: Rasht City)
Rivers are important water resources for human life, but sometimes cause irreparable damages. The flood plains are fertile terrains which are endangered by flood. Flood hazard mapping is one of the basic methods in flood fighting. In order to decline flood damages, the simulation of the hydraulic behavior of the rivers during flood occurrence is very important. In this study, areas that are flo...
متن کاملEffects of impervious surfaces and urban development on runoff generation and flood hazard in the Hajighoshan watershed
Urbanization is a pervasive global trend. The development of residential areas and road network in Hajighoshan watershed (northern Iran) has been observed in the recent several decades. The objective of this study is the quantitative investigation of the effects of impervious surfaces development and urban development on runoff generation and flood hazard. The study of urban area development wa...
متن کاملSustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed
An integrated framework is presented for sustainability-based flood hazard mapping of the Swannanoa River watershed in the state of North Carolina, U.S. The framework uses a hydrologic model for rainfall–runoff transformation, a two-dimensional unsteady hydraulic model flood simulation and a GIS-based multi-criteria decision-making technique for flood hazard mapping. Economic, social, and envir...
متن کامل